El propósito fundamental del fluido de perforación es ayudar a hacer rápida y segura la perforación del pozo. Las principales funciones de los fluidos de perforación incluyen suministrar la presión hidrostática para evitar que los fluidos de las formaciones entren al recinto del pozo; mantener la barrena fría y limpia durante la perforación; acarrear el ripio (cortes de perforación) y mantenerlo en suspensión cuando se detiene la operación y cuando el conjunto de perforación se mete y saca del pozo. El fluido de perforación usado en una tarea particular se escoge para evitar daños a la formación productora y limitar la corrosión. A continuación se discriminan las funciones. Las funciones del fluido de perforación describen las tareas que el fluido de perforación es capaz de desempeñar, aunque algunas de éstas no sean esenciales en cada pozo. La remoción de los recortes del pozo y el control de las presiones de la formación son funciones sumamente importantes. Aunque el orden de importancia sea determinado por las condiciones del pozo y las operaciones en curso, las funciones más comunes del fluido de perforación son las siguientes:

1. Retirar los recortes del pozo.
2. Controlar las presiones de la formación.
3. Suspender y descargar los recortes.
4. Obturar las formaciones permeables.
5. Mantener la estabilidad del agujero.
6. Minimizar los daños al yacimiento.
7. Enfriar, lubricar y apoyar la barrena y el conjunto de perforación.
8. Transmitir la energía hidráulica a las herramientas y a la barrena.
9. Asegurar una evaluación adecuada de la formación.
10. Controlar la corrosión.
11. Facilitar la cementación y la completación.
12. Minimizar el impacto al ambiente.

Remoción de los recortes del pozo.


(Observación: La velocidad de caída, la velocidad de transporte y los efectos de la reología y de las condiciones hidráulicas sobre el transporte de los recortes se describirán detalladamente en otro capítulo.)

El transporte de recortes en los pozos de alto ángulo y horizontales es más difícil que en los pozos verticales. La velocidad de transporte, tal como fue definida para los pozos verticales, no es aplicable en el caso de pozos desviados, visto que los recortes se sedimentan en la parte baja del pozo, en sentido perpendicular a la trayectoria de flujo del fluido, y no en sentido contrario al flujo de fluido de perforación. En los pozos horizontales, los recortes se acumulan a lo largo de la parte inferior del pozo, formando camas de recortes. Estas camas restringen el flujo, aumentan el torque, y son difíciles de eliminar. Se usan dos métodos diferentes para las situaciones de limpieza difícil del pozo que suelen ser encontradas en los pozos de alto ángulo y horizontales: El uso de fluidos tixotrópicos que disminuyen su viscosidad con el esfuerzo de corte y que tienen una alta Viscosidad a Muy Baja Velocidad de Corte (LSRV) y condiciones de flujo laminar. Ejemplos de estos tipos de fluido incluyen los sistemas de biopolímeros como FLO-PRO®, y las lechadas de bentonita floculadas tal como el sistema DRILPLEXTM de Hidróxido de Metales Mezclados (MMH). Dichos sistemas de fluidos de perforación proporcionan una alta viscosidad con un perfil de velocidad anular relativamente plano, limpiando una mayor porción de la sección transversal del pozo. Este método tiende a suspender los recortes en la trayectoria de flujo del lodo e impide que los recortes se sedimenten en la parte baja del pozo. Con los lodos densificados, el transporte de los recortes puede ser mejorado aumentando las indicaciones de 3 y 6 RPM del cuadrante de Fann (indicaciones de LSRV) de 1 a 1 1/2 veces el tamaño del pozo en pulgadas, y usando el más alto caudal laminar posible.
 Densidad. Los fluidos de alta densidad facilitan la limpieza del pozo aumentando las fuerzas de flotación que actúan sobre los recortes, lo cual contribuye a su remoción del pozo. En comparación con los fluidos de menor densidad, los fluidos de alta densidad pueden limpiar el agujero de manera adecuada, aun con velocidades anulares más bajas y propiedades reológicas inferiores. Sin embargo, el peso del lodo en exceso del que se requiere para equilibrar las presiones de la formación tiene un impacto negativo sobre la operación de perforación; por lo tanto, este peso nunca debe ser aumentado a efectos de limpieza del agujero.
El uso de un alto caudal y de un lodo fluido para obtener un flujo turbulento. El flujo turbulento proporcionará una buena limpieza del pozo e impedirá que los recortes se sedimenten durante la circulación, pero éstos se sedimentarán rápidamente cuando se interrumpa la circulación. Este método funciona manteniendo los recortes suspendidos bajo el efecto de la turbulencia y de las altas velocidades anulares. Es más eficaz cuando se usan fluidos no densificados de baja densidad en formaciones competentes (que no se desgastan fácilmente). La eficacia de esta técnica puede ser limitada por distintos factores, incluyendo un agujero de gran tamaño, una bomba de baja capacidad, una integridad insuficiente de la formación y el uso de motores de fondo y herramientas de fondo que limitan el caudal.


Rotación de la columna de perforación. Las altas velocidades de rotación también facilitan la limpieza del pozo introduciendo un componente circular en la trayectoria del flujo anular. Este flujo helicoidal (en forma de espiral o sacacorchos) alrededor de la columna de perforación hace que los recortes de perforación ubicados cerca de la pared del pozo, donde existen condiciones de limpieza del pozo deficientes, regresen hacia las regiones del espacio anular que tienen mejores características de transporte. Cuando es posible, la rotación de la columna de perforación constituye uno de los mejores métodos para retirar camas de recortes en pozos de alto ángulo y pozos horizontales.

Control de las presiones de la formación.
 

Suspensión y descarga de recortes.

Los recortes de perforación que se sedimentan durante condiciones estáticas pueden causar puentes y rellenos, los cuales, por su parte, pueden producir el atascamiento de la tubería o la pérdida de circulación. El material densificante que se sedimenta constituye un asentamiento y causa grandes variaciones de la densidad del fluido del pozo. El asentamiento ocurre con mayor frecuencia bajo condiciones dinámicas en los pozos de alto ángulo donde el fluido está circulando a bajas velocidades anulares. Las altas concentraciones de sólidos de perforación son perjudiciales para prácticamente cada aspecto de la operación de perforación, principalmente la eficacia de la perforación y la velocidad de penetración (ROP). Estas concentraciones aumentan el peso y la viscosidad del lodo, produciendo mayores costos de mantenimiento y una mayor necesidad de dilución. También aumentan la potencia requerida para la circulación, el espesor del revoque, el torque y el arrastre, y la probabilidad de pegadura por presión diferencial. Se debe mantener un equilibrio entre las propiedades del fluido de perforación que suspenden los recortes y las propiedades que facilitan la remoción de los recortes por el equipo de control de sólidos. La suspensión de los recortes requiere fluidos de alta viscosidad que disminuyen su viscosidad con el esfuerzo de corte con propiedades tixotrópicas, mientras que el equipo de remoción de sólidos suele funcionar más eficazmente con fluidos de viscosidad más baja. El equipo de control de sólidos no es tan eficaz con los fluidos de perforación que no disminuyen su viscosidad con el esfuerzo de corte, los cuales tienen un alto contenido de sólidos y una alta viscosidad plástica. Para lograr un control de sólidos eficaz, los sólidos de perforación deben ser extraídos del fluido de perforación durante la primera circulación proveniente del pozo. Al ser circulados de nuevo, los recortes se descomponen en partículas más pequeñas que son más difíciles de retirar. Un simple método para confirmar la remoción de los sólidos de perforación consiste en comparar el porcentaje de arena en el lodo en la línea de flujo y en el tanque de succión.

Obturación de las formaciones permeables.

Cuando la presión de la columna de lodo es más alta que la presión de la formación, el filtrado invade la formación y un revoque se deposita en la pared del pozo. Los sistemas de fluido de perforación deberían estar diseñados para depositar sobre la formación un delgado revoque de baja permeabilidad con el fin de limitar la invasión de filtrado. Esto mejora la estabilidad del pozo y evita numerosos problemas de perforación y producción. Los posibles problemas relacionados con un grueso revoque y la filtración excesiva incluyen las condiciones de pozo "reducido", registros de mala calidad, mayor torque y arrastre, tuberías atascadas, pérdida de circulación, y daños a la formación. En las formaciones muy permeables con grandes gargantas de poros, el lodo entero puede invadir la formación, según el tamaño de los sólidos del lodo. Para estas situaciones, será necesario usar agentes puenteantes para bloquear las aberturas grandes, de manera que los sólidos del lodo puedan formar un sello. Para ser eficaces, los agentes puenteantes deben tener un tamaño aproximadamente igual a la mitad del tamaño de la abertura más grande. Los agentes puenteantes incluyen el carbonato de calcio, la celulosa molida y una gran variedad de materiales de pérdida por infiltración u otros materiales finos de pérdida de circulación. Según el sistema de fluido de perforación que se use, varios aditivos pueden ser aplicados para mejorar el revoque, limitando la filtración. Estos incluyen la bentonita, los polímeros naturales y sintéticos, el asfalto y la gilsonita, y los aditivos desfloculantes orgánicos.

Mantenimiento de la estabilidad del agujero.
Varios inhibidores o aditivos químicos pueden ser agregados para facilitar el control de las interacciones entre el lodo y la lutita. Los sistemas con altos niveles de calcio, potasio u otros inhibidores químicos son mejores para perforar en formaciones sensibles al agua. Sales, polímeros, materiales asfálticos, glicoles, aceites, agentes tensioactivos y otros inhibidores de lutita pueden ser usados en los fluidos de perforación a base de agua para inhibir el hinchamiento de la lutita e impedir el derrumbe. La lutita está caracterizada por composiciones y sensibilidades tan variadas que no se puede aplicar universalmente ningún aditivo en particular. Los fluidos de perforación a base de petróleo o sintéticos se usan frecuentemente para perforar las lutitas más sensibles al agua, en áreas donde las condiciones de perforación son difíciles. Estos fluidos proporcionan una mejor inhibición de lutita que los fluidos de perforación a base de agua. Las arcillas y lutitas no se hidratan ni se hinchan en la fase continua, y la inhibición adicional es proporcionada por la fase de salmuera emulsionada (generalmente cloruro de calcio) de estos fluidos. La salmuera emulsionada reduce la actividad del agua y crea fuerzas osmóticas que impiden la adsorción del agua por las lutitas.
La estabilidad del pozo constituye un equilibrio complejo de factores mecánicos (presión y esfuerzo) y químicos. La composición química y las propiedades del lodo deben combinarse para proporcionar un pozo estable hasta que se pueda introducir y cementar la tubería de revestimiento. Independientemente de la composición química del fluido y otros factores, el peso del lodo debe estar comprendido dentro del intervalo necesario para equilibrar las fuerzas mecánicas que actúan sobre el pozo (presión de la formación, esfuerzos del pozo relacionados con la orientación y la tectónica). La inestabilidad del pozo suele ser indicada por el derrumbe de la formación, causando condiciones de agujero reducido, puentes y relleno durante las maniobras. Esto requiere generalmente el ensanchamiento del pozo hasta la profundidad original. (Se debe tener en cuenta que estos mismos síntomas también indican problemas de limpieza del pozo en pozos de alto ángulo y pozos difíciles de limpiar.) La mejor estabilidad del pozo se obtiene cuando éste mantiene su tamaño y su forma cilíndrica original. Al desgastarse o ensancharse de cualquier manera, el pozo se hace más débil y es más difícil de estabilizar. El ensanchamiento del pozo produce una multitud de problemas, incluyendo bajas velocidades anulares, falta de limpieza del pozo, mayor carga de sólidos, evaluación deficiente de la formación, mayores costos de cementación y cementación inadecuada. El ensanchamiento del pozo a través de las formaciones de arena y arenisca se debe principalmente a las acciones mecánicas, siendo la erosión generalmente causada por las fuerzas hidráulicas y las velocidades excesivas a través de las toberas de la barrena. Se puede reducir considerablemente el ensanchamiento del pozo a través de las secciones de arena adoptando un programa de hidráulica más prudente, especialmente en lo que se refiere a la fuerza de impacto y a la velocidad de la tobera. Las arenas mal consolidadas y débiles requieren un ligero sobrebalance y un revoque de buena calidad que contenga bentonita para limitar el ensanchamiento del pozo. En las lutitas, si el peso del lodo es suficiente para equilibrar los esfuerzos de la formación, los pozos son generalmente estables – inicialmente. Con lodos a base de agua, las diferencias químicas causan interacciones entre el fluido de perforación y la lutita, las cuales pueden producir (con el tiempo) el hinchamiento o el ablandamiento. Esto causa otros problemas, tales como el asentamiento y condiciones de agujero reducido. Las lutitas secas, quebradizas, altamente fracturadas, con altos ángulos de buzamiento pueden ser extremadamente inestables cuando son perforadas. La insuficiencia de estas formaciones secas y quebradizas es principalmente de carácter mecánico y normalmente no está relacionada con las fuerzas hidráulicas o químicas.

Minimización de los daños a la formación.

Estos daños pueden producirse como resultado de la obturación causada por el lodo o los sólidos de perforación, o de las interacciones químicas (lodo) y mecánicas (conjunto de perforación) con la formación. El daño a la formación es generalmente indicado por un valor de daño superficial o por la caída de presión que ocurre mientras el pozo está produciendo (diferencial de presión del yacimiento al pozo). El tipo de procedimiento y método de completación determinará el nivel de protección requerido para la formación. Por ejemplo, cuando un pozo está entubado, cementado y perforado, la profundidad de perforación permite generalmente una producción eficaz, a pesar de los daños que puedan existir cerca del agujero. En cambio, cuando se termina un pozo horizontal usando uno de los métodos de "completación en pozo abierto", se requiere usar un fluido de "perforación del yacimiento" – diseñado especialmente para minimizar los daños. Aunque los daños causados por el fluido de perforación no sean casi nunca tan importantes que no se pueda producir el petróleo y/o gas, sería prudente tener en cuenta los posibles daños a la formación al seleccionar un fluido para perforar los intervalos productivos potenciales. 

Algunos de los mecanismos más comunes causantes de daños a la formación son los siguientes:
 

Enfriamiento, lubricación y sostenimiento de la barrena y del conjunto de perforación.
La lubricidad de un fluido en particular es medida por su Coeficiente de Fricción (COF), y algunos lodos proporcionan una lubricación más eficaz que otros. Por ejemplo, los lodos base de aceite y sintético lubrican mejor que la mayoría de los lodos base agua, pero éstos pueden ser mejorados mediante la adición de lubricantes. En cambio, los lodos base agua proporcionan una mayor lubricidad y capacidad refrigerante que el aire o el gas. El coeficiente de lubricación proporcionado por un fluido de perforación varía ampliamente y depende del tipo y de la cantidad de sólidos de perforación y materiales densificantes, además de la composición química del sistema – pH, salinidad y dureza. La modificación de la lubricidad del lodo no es una ciencia exacta. Aun cuando se ha realizado, una evaluación exhaustiva, teniendo en cuenta todos los factores pertinentes, es posible que la aplicación de un lubricante no produzca la reducción anticipada del torque y del arrastre. Altos valores de torque y arrastre, un desgaste anormal, y el agrietamiento por calor de los componentes de la columna de perforación constituyen indicios de una lubricación deficiente. Sin embargo, se debe tener en cuenta que estos problemas también pueden ser causados por grandes patas de perro y problemas de desviación, embolamiento de la barrena, asentamiento ojo de llave, falta de limpieza del agujero y diseño incorrecto del conjunto de fondo. Aunque un lubricante pueda reducir los síntomas de estos problemas, la causa propiamente dicha debe ser corregida para solucionar el problema. El fluido de perforación ayuda a soportar una porción del peso de la columna de perforación o tubería de revestimiento mediante la flotabilidad. Cuando una columna de perforación, una tubería de revestimiento corta o una tubería de revestimiento está suspendida en el fluido de perforación, una fuerza igual al peso del lodo desplazado la mantiene a flote, reduciendo la carga del gancho en la torre de perforación. La flotabilidad está directamente relacionada con el peso del lodo; por lo tanto, un fluido de 18-lb/gal proporcionará el doble de la flotabilidad proporcionada por un fluido de 9-lb/gal.

El peso que una torre de perforación puede sostener está limitado por su capacidad mecánica, un factor que se hace cada vez más importante con el aumento de la profundidad, a medida que el peso de la sarta de perforación y de la tubería de revestimiento se hace enorme. Aunque la mayoría de los equipos de perforación tengan suficiente capacidad para manejar el peso de la columna de perforación sin flotabilidad, éste es un factor importante que se debe tener en cuenta al evaluar el punto neutro (cuando la columna de perforación no está sometida a ningún esfuerzo de tensión o compresión). Sin embargo, cuando se introducen largas y pesadas tuberías de revestimiento, se puede usar la flotabilidad para proporcionar una ventaja importante. Cuando se usa la flotabilidad, es posible introducir tuberías de revestimiento cuyo peso excede la capacidad de carga del gancho de un equipo de perforación. Si la tubería de revestimiento no está completamente llena de lodo al ser introducida dentro del agujero, el volumen vacío dentro de la tubería de revestimiento aumenta la flotabilidad, reduciendo considerablemente la carga del gancho a utilizar. Este proceso se llama "introducción por flotación" ("floating in") de la tubería de revestimiento.
Las fuerzas mecánicas e hidráulicas generan una cantidad considerable de calor por fricción en la barrena y en las zonas donde la columna de perforación rotatoria roza contra la tubería de revestimiento y el pozo. La circulación del fluido de perforación enfría la barrena y el conjunto de perforación, alejando este calor de la fuente y distribuyéndolo en todo el pozo. La circulación del fluido de perforación enfría la columna de perforación hasta temperaturas más bajas que la temperatura de fondo. Además de enfriar, el fluido de perforación lubrica la columna de perforación, reduciendo aún más el calor generado por fricción. Las barrenas, los motores de fondo y los componentes de la columna de perforación fallarían más rápidamente si no fuera por los efectos refrigerantes y lubricantes del fluido de perforación.

Transmisión de la energía hidráulica a las herramientas y a la barrena.
En los pozos someros, la potencia hidráulica disponible es generalmente suficiente para asegurar la limpieza eficaz de la barrena. Como la presión disponible en la columna de perforación disminuye a medida que se aumenta la profundidad del pozo, se alcanzará una profundidad a la cual la presión será insuficiente para asegurar la limpieza óptima de la barrena. Se puede aumentar esta profundidad controlando cuidadosamente las propiedades del lodo.
La energía hidráulica puede ser usada para maximizar la velocidad de penetración (ROP), mejorando la remoción de recortes en la barrena. Esta energía también alimenta los motores de fondo que hacen girar la barrena y las herramientas de Medición al Perforar (MWD) y Registro al Perforar (LWD). Los programas de hidráulica se basan en el dimensionamiento correcto de las toberas de la barrena para utilizar la potencia disponible (presión o energía) de la bomba de lodo a fin de maximizar la caída de presión en la barrena u optimizar la fuerza de impacto del chorro sobre el fondo del pozo. Los programas de hidráulica están limitados por la potencia disponible de la bomba, las pérdidas de presión dentro de la columna de perforación, la presión superficial máxima permisible y el caudal óptimo. Los tamaños de las toberas se seleccionan con el fin de aprovechar la presión disponible en la barrena para maximizar el efecto del impacto de lodo en el fondo del pozo. Esto facilita la remoción de los recortes debajo de la barrena y ayuda a mantener limpia la estructura de corte. Las pérdidas de presión en la columna de perforación son mayores cuando se usan fluidos con densidades, viscosidades plásticas y contenidos de sólidos más altos. El uso de tuberías de perforación o juntas de tubería de perforación de pequeño diámetro interior (DI), motores de fondo y herramientas de MWD/LWD reduce la cantidad de presión disponible en la barrena. Los fluidos de perforación que disminuyen su viscosidad con el esfuerzo de corte, de bajo contenido de sólidos, o los fluidos que tienen características reductoras de arrastre, son más eficaces para transmitir la energía hidráulica a las herramientas de perforación y a la barrena.

Asegurar la evaluación adecuada de la formación.

Ciertos registros eléctricos son eficaces en fluidos conductores, mientras que otros lo son en fluidos no conductores. Las propiedades del fluido de perforación afectarán la medición de las propiedades de la roca por las herramientas eléctricas de cable. El filtrado excesivo puede expulsar el petróleo y el gas de la zona próxima al agujero, perjudicando los registros y las muestras obtenidas por las pruebas FT o DST. Los lodos que contienen altas concentraciones iónicas de potasio perjudican el registro de la radioactividad natural de la formación. La salinidad alta o variable del filtrado puede dificultar o impedir la interpretación de los registros eléctricos. Las herramientas de registro con cable deben ser introducidas desde la superficie hasta el fondo, y las propiedades de la roca se miden a medida que las herramientas son retiradas del pozo. Para un registro con cable óptimo, el lodo no debe ser demasiado denso y debe mantener la estabilidad del pozo y suspender cualesquier recortes o derrumbes. Además, el pozo debe mantener el mismo calibre desde la superficie hasta el fondo, visto que el ensanchamiento excesivo del diámetro interior y/o los revoques gruesos pueden producir diferentes respuestas al registro y aumentar la posibilidad de bloqueo de la herramienta de registro. La selección del lodo requerido para perforar un núcleo está basada en el tipo de evaluación a realizar. Si se extrae un núcleo solamente para determinar la litología (análisis mineral), el tipo de lodo no es importante. Si el núcleo será usado para estudios de inyección de agua y/o humectabilidad, será necesario usar un lodo "suave" a base de agua, de pH neutro, sin agentes tensioactivos o diluyentes. Si el núcleo será usado para medir la saturación de agua del yacimiento, se suele recomendar un lodo suave a base de aceite con una cantidad mínima de agentes tensioactivos y sin agua o sal. Muchas operaciones de extracción de núcleos especifican un lodo suave con una cantidad mínima de aditivos.

Control de la corrosión.

Cuando los fluidos de la formación y/o otras condiciones de fondo lo justifican, metales y elastómeros especiales deberían ser usados. Muestras de corrosión deberían ser obtenidas durante todas las operaciones de perforación para controlar los tipos y las velocidades de corrosión. La aireación del lodo, formación de espuma y otras condiciones de oxígeno ocluido pueden causar graves daños por corrosión en poco tiempo. Los inhibidores químicos y secuestradores son usados cuando el riesgo de corrosión es importante. Los inhibidores químicos deben ser aplicados correctamente. Las muestras de corrosión deberían ser evaluadas para determinar si se está usando el inhibidor químico correcto y si la cantidad es suficiente. Esto mantendrá la velocidad de corrosión a un nivel aceptable. El sulfuro de hidrógeno puede causar una falla rápida y catastrófica de la columna de perforación. Este producto también es mortal para los seres humanos, incluso después de cortos periodos de exposición y en bajas concentraciones. Cuando se perfora en ambientes de alto contenido de H2S, se recomienda usar fluidos de alto pH, combinados con un producto químico secuestrador de sulfuro, tal como el cinc.

Facilitar la cementación y completación.
El desplazamiento eficaz del lodo requiere que el pozo tenga un calibre casi uniforme y que el lodo tenga una baja viscosidad y bajas resistencias de gel no progresivas. Las operaciones de completación tales como la perforación y la colocación de filtros de grava también requieren que el pozo tenga un calibre casi uniforme y pueden ser afectadas por las características del lodo.
El fluido de perforación debe producir un pozo dentro del cual la tubería de revestimiento puede ser introducida y cementada eficazmente, y que no dificulte las operaciones de completación. La cementación es crítica para el aislamiento eficaz de la zona y la completación exitosa del pozo. Durante la introducción de la tubería de revestimiento, el lodo debe permanecer fluido y minimizar el suabeo y pistoneo, de manera que no se produzca ninguna pérdida de circulación inducida por las fracturas. Resulta más fácil introducir la tubería de revestimiento dentro de un pozo liso de calibre uniforme, sin recortes, derrumbes o puentes. El lodo debería tener un revoque fino y liso. Para que se pueda cementar correctamente la tubería de revestimiento, todo el lodo debe ser desplazado por los espaciadores, los fluidos de limpieza y el cemento.

Minimizar el impacto sobre el medio ambiente.
Con el tiempo, el fluido de perforación se convierte en un desecho y debe ser eliminado de conformidad con los reglamentos ambientales locales. Los fluidos de bajo impacto ambiental que pueden ser eliminados en la cercanía del pozo son los más deseables. La mayoría de los países han establecido reglamentos ambientales locales para los desechos de fluidos de perforación. Los fluidos a base de agua, a base de petróleo, anhidros y sintéticos están sujetos a diferentes consideraciones ambientales y no existe ningún conjunto único de características ambientales que sea aceptable para todas las ubicaciones. Esto se debe principalmente a las condiciones complejas y cambiantes que existen por todo el mundo – la ubicación y densidad de las poblaciones humanas, la situación geográfica local (costa afuera o en tierra), altos o bajos niveles de precipitación, la proximidad del sitio de eliminación respecto a las fuentes de agua superficiales y subterráneas, la fauna y flora local, y otras condiciones.
Los componentes de la columna de perforación y tubería de revestimiento que están constantemente en contacto con el fluido de perforación están propensos a varias formas de corrosión. Los gases disueltos tales como el oxígeno, dióxido de carbono y sulfuro de hidrógeno pueden causar graves problemas de corrosión, tanto en la superficie como en el fondo del pozo. En general, un pH bajo agrava la corrosión. Por lo tanto, una función importante del fluido de perforación es mantener la corrosión a un nivel aceptable. Además de proteger las superficies metálicas contra la corrosión, el fluido de perforación no debería dañar los componentes de caucho o elastómeros. 
La evaluación correcta de la formación es esencial para el éxito de la operación de perforación, especialmente durante la perforación exploratoria. Las propiedades químicas y físicas del lodo afectan la evaluación de la formación. Las condiciones físicas y químicas del agujero después de la perforación también afectan la evaluación de la formación. Durante la perforación, técnicos llamados registradores de lodo (Mud Loggers) controlan la circulación del lodo y de los recortes para detectar indicios de petróleo y gas. Estos técnicos examinan los recortes para determinar la composición mineral, la paleontología y detectar cualquier indicio visual de hidrocarburos. Esta información se registra en un registro geológico (mud log) que indica la litología, la velocidad de penetración (ROP), la detección de gas y los recortes impregnados de petróleo, además de otros parámetros geológicos y de perforación importantes. Los registros eléctricos con cable son realizados para evaluar la formación con el fin de obtener información adicional. También se pueden obtener núcleos de pared usando herramientas transportadas por cable de alambre. Los registros con cable incluyen la medición de las propiedades eléctricas, sónicas, nucleares y de resonancia magnética de la formación, para identificar la litología y los fluidos de la formación. Herramientas de LWD están disponibles para obtener un registro continuo mientras se perfora el pozo. También se perfora una sección cilíndrica de la roca (un núcleo) en las zonas de producción para realizar la evaluación en el laboratorio con el fin de obtener la información deseada. Las zonas productivas potenciales son aisladas y evaluadas mediante la realización de Pruebas de Intervalo (FT) o Pruebas de Productividad Potencial de la Formación (DST) para obtener datos de presión y muestras de fluido. Todos estos métodos de evaluación de la formación son afectados por el fluido de perforación. Por ejemplo, si los recortes se dispersan en el lodo, el geólogo no tendrá nada que evaluar en la superficie. O si el transporte de los recortes no es bueno, será difícil para el geólogo determinar la profundidad a la cual los recortes se originaron. Los lodos a base de petróleo, lubricantes, asfaltos y otros aditivos ocultarán los indicios de hidrocarburos en los recortes. 
a) Invasión de la matriz de la formación por el lodo o los sólidos de perforación, obturando los poros.
b) Hinchamiento de las arcillas de la formación dentro del yacimiento, reduciendo la permeabilidad.
c) Precipitación de los sólidos como resultado de la incompatibilidad entre el filtrado y los fluidos de la formación.
e) Formación de una emulsión entre el filtrado y los fluidos de la formación, limitando la permeabilidad. La posibilidad de daños a la formación puede ser determinada a partir de los datos de pozos de referencia y del análisis de los núcleos de la formación para determinar la permeabilidad de retorno. Fluidos de perforación diseñados para minimizar un problema en particular, fluidos de perforación del yacimiento diseñados especialmente, o fluidos de rehabilitación y completación pueden ser usados para minimizar los daños a la formación.
La protección del yacimiento contra daños que podrían perjudicar la producción es muy importante. Cualquier reducción de la porosidad o permeabilidad natural de una formación productiva es considerada como daño a la formación.
La permeabilidad se refiere a la capacidad de los fluidos de fluir a través de formaciones porosas; las formaciones deben ser permeables para que los hidrocarburos puedan ser producidos. 
Los lodos de perforación deben suspender los recortes de perforación, los materiales densificantes y los aditivos bajo una amplia variedad de condiciones, sin embargo deben permitir la remoción de los recortes por el equipo de control de sólidos. 
Mantener un pozo "bajo control" se describe frecuentemente como un conjunto de condiciones bajo las cuales ningún fluido de la formación fluye dentro del pozo. Pero esto también incluye situaciones en las cuales se permite que los fluidos de la formación fluyan dentro del pozo – bajo condiciones controladas. Dichas condiciones varían – de los casos en que se toleran altos niveles de gas de fondo durante la perforación, a situaciones en que el pozo produce cantidades comerciales de petróleo y gas mientras se está perforando. El control de pozo (o control de presión) significa que no hay ningún flujo incontrolable de fluidos de la formación dentro del pozo. La presión hidrostática también controla los esfuerzos adyacentes al pozo y que no son ejercidos por los fluidos de la formación. En las regiones geológicamente activas, las fuerzas tectónicas imponen esfuerzos sobre las formaciones y pueden causar la inestabilidad de los pozos, aunque la presión del fluido de la formación esté equilibrada. Los pozos ubicados en formaciones sometidas a esfuerzos tectónicos pueden ser estabilizados equilibrando estos esfuerzos con la presión hidrostática. Igualmente, la orientación del pozo en los intervalos de alto ángulo y horizontales puede reducir la estabilidad del pozo, lo cual también se puede controlar con la presión hidrostática. Las presiones normales de formación varían de un gradiente de presión de 0,433 psi/pie (equivalente a 8,33 lb/gal de agua dulce) en las áreas ubicadas tierra adentro, a 0,465 psi/pie (equivalente a 8,95 lb/gal) en las cuencas marinas. La elevación, ubicación, y varios procesos e historias geológicas crean condiciones donde las presiones de la formación se desvían considerablemente de estos valores normales. La densidad del fluido de perforación puede variar desde la densidad del aire (básicamente 0 psi/pie) hasta más de 20,0 lb/gal (1,04 psi/pie). Las formaciones con presiones por debajo de lo normal se perforan frecuentemente con aire, gas, niebla, espuma rígida, lodo aireado o fluidos especiales de densidad ultrabaja (generalmente a base de petróleo). El peso de lodo usado para perforar un pozo está limitado por el peso mínimo necesario para controlar las presiones de la formación y el peso máximo del lodo que no fracturará la formación. En la práctica, conviene limitar el peso del lodo al mínimo necesario para asegurar el control del pozo y la estabilidad del pozo.
Como se mencionó anteriormente, una función básica del fluido de perforación es controlar las presiones de la formación para garantizar una operación de perforación segura. Típicamente, a medida que la presión de la formación aumenta, se aumenta la densidad del fluido de perforación agregando barita para equilibrar las presiones y mantener la estabilidad del agujero. Esto impide que los fluidos de formación fluyan hacia el pozo y que los fluidos de formación presurizados causen un reventón. La presión ejercida por la columna de fluido de perforación mientras está estática (no circulando) se llama presión hidrostática y depende de la densidad (peso del lodo) y de la Profundidad Vertical Verdadera (TVD) del pozo. Si la presión hidrostática de la columna de fluido de perforación es igual o superior a la presión de la formación, los fluidos de la formación no fluirán dentro del pozo.
Los recortes de perforación deben ser retirados del pozo a medida que son generados por la barrena. A este fin, se hace circular un fluido de perforación dentro de la columna de perforación y a través de la barrena, el cual arrastra y transporta los recortes hasta la superficie, subiendo por el espacio anular. La remoción de los recortes (limpieza del agujero) depende del tamaño, forma y densidad de los recortes, unidos a la Velocidad de Penetración (ROP); de la rotación de la columna de perforación; y de la viscosidad, densidad y velocidad anular del fluido de perforación. Viscosidad. La viscosidad y las propiedades reológicas de los fluidos de perforación tienen un efecto importante sobre la limpieza del pozo. Los recortes se sedimentan rápidamente en fluidos de baja viscosidad (agua, por ejemplo) y son difíciles de circular fuera del pozo. En general, los fluidos de mayor viscosidad mejoran el transporte de los recortes. La mayoría de los lodos de perforación son tixotrópicos, es decir que se gelifican bajo condiciones estáticas. Esta característica puede suspender los recortes mientras que se efectúan las conexiones de tuberías y otras situaciones durante las cuales no se hace circular el lodo. Los fluidos que disminuyen su viscosidad con el esfuerzo de corte y que tienen altas viscosidades a bajas velocidades anulares han demostrado ser mejores para una limpieza eficaz del pozo. Velocidad. En general, la remoción de los recortes es mejorada por las altas velocidades anulares. Sin embargo, con los fluidos de perforación más diluidos, las altas velocidades pueden causar un flujo turbulento que ayuda a limpiar el agujero, pero puede producir otros problemas de perforación o en el agujero. La velocidad a la cual un recorte se sedimenta en un fluido se llama velocidad de caída. La velocidad de caída de un recorte depende de su densidad, tamaño y forma, y de la viscosidad, densidad y velocidad del fluido de perforación. Si la velocidad anular del fluido de perforación es mayor que la velocidad de caída del recorte, el recorte será transportado hasta la superficie. La velocidad neta a la cual un recorte sube por el espacio anular se llama velocidad de transporte. En un pozo vertical: Velocidad de transporte = Velocidad anular - velocidad de caída